Triterpenes from *Garcia parviflora*. Cytotoxic Evaluation of Natural and Semisynthetic Friedelanes

Blanca M. Reyes, María Teresa Ramírez-Apan, Rubén A. Toscano, and Guillermo Delgado*

Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán 04510, México D. F

Received July 12, 2010

Three new friedelane-type triterpenes, 1,2-dehydro-2,3-secofriedelan-3-oic acid (1), 1 β -hydroxyfriedelin (2), and 3 β -hydroxyfriedelan-23-oic acid (3), and the known compounds friedelin-3,4-lactone (4), acetyl aleuritolic acid (5), 4-hydroxy-5-propionyl-1,3-di-*O*-methylpyrogallol, elemicin, and (–)-syringaresinol were isolated from the leaves of *Garcia parviflora*. The structures of 1–3 were elucidated by spectroscopic methods, including 1D and 2D NMR, HREIMS, X-ray, and CD analysis. Some derivatives of 2 (6–14) were prepared via oxidation, reduction, and esterification. The natural triterpenes and the semisynthetic friedelane derivatives were tested for cytotoxic activity against human cancer cell lines U251, PC-3, K562, HCT-15, MCF-7, and SKLU-1. Compound 5 was cytotoxic against U251 cells.

Members of the plant family Euphorbiaceae have provided various bioactive metabolites,¹ including pro-inflammatory,² antiinflammatory,³ antiviral,⁴ and cytotoxic⁵ compounds, represented by cytotoxic triterpenes,^{6,7} diterpenes,⁸ and sesquiterpenes.^{7,9} *Garcia parviflora* Lundell (Euphorbiaceae) is a tree endemic to Mexico,¹⁰ and its chemical constituents have not been investigated previously. Three new friedelanes (1–3) have been isolated and characterized from this material, together with some known compounds. Previous publications^{11,12} have reported the preparation of several compounds by modifying the A ring of friedelane triterpenes, which afforded derivatives with cytotoxic activity. Therefore, we prepared some selected derivatives of 2 (6–14) via oxidation, reduction, and esterification. The natural triterpenes and the semisynthetic friedelane derivatives were tested for cytotoxicity against breast (MCF-7), leukemia (K562), central nervous system (U251, Glia), prostate (PC-3), colon (HCT-15), and lung (SKLU-1) cancer cell lines.

Results and Discussion

The hexane, ethyl acetate, and methanol extracts obtained from the aerial parts of *G. parviflora* were evaluated in a cytotoxicity assay using the sulforhodamine B colorimetric method.¹³ In this assay, the hexane and ethyl acetate extracts inhibited growth of cells in the U251, PC3, K562, SKLU-1, and MCF-7 cancer cell lines (between 60% and 100% at 50 μ g/mL), which encouraged us to investigate their bioactive principles. Fractionation of the hexane extract led to the isolation and characterization of the new triterpene 1,2-dehydro-2,3-secofriedelan-3-oic acid (1) and the known compounds friedelin-3,4-lactone (4),¹⁴ acetyl aleuritolic acid (5),^{15,16} and β -sitosterol. The new natural products 1 β -hydroxyfriedelin (2) and 3 β -hydroxyfriedelan-23-oic acid (3) and the known compounds 4-hydroxy-5-propionyl-1,3-di- ∂ -methylpyrogallol¹⁷ and elemicin^{18,19} were isolated from the ethyl acetate extract. The methanol extract yielded the known compounds (—)-syringaresinol^{20,21} and β -sitosteryl- β -D-glucopyranoside.

Compound 1 was obtained as a white solid. Its molecular formula was established as C₃₀H₅₀O₂ from the HRFABMS (m/z 443.3886 $[M + H]^+$), indicating six degrees of unsaturation. The IR spectrum showed absorptions indicating OH (3375 cm⁻¹) and carbonyl (1693 cm⁻¹) groups. Analysis of the ¹³C NMR (Table 1) spectrum, with the aid of DEPT and HSQC experiments, revealed the presence of 30 signals involving eight methyl ($\delta_{\rm C}$ 34.9, 32.1, 31.8, 20.8, 20.3, 18.9, 18.7, and 11.7), nine sp³ methylene ($\delta_{\rm C}$ 39.3, 36.6, 36.0, 35.3, 34.3, 32.8, 32.3, 30.3, and 17.7), one sp² methylene ($\delta_{\rm C}$ 118.7), four sp³ methine ($\delta_{\rm C}$ 60.6, 52.4, 47.8, and 42.8) with one sp² ($\delta_{\rm C}$ 135.2), and seven quaternary carbons including the carbonyl group of a carboxylic acid ($\delta_{\rm C}$ 179.5, 39.7, 38.6, 38.5, 37.0, 30.0, and 28.2). The ¹H NMR spectrum (Table 1) showed seven tertiary methyl singlets and one secondary methyl doublet; these data were in agreement with the structure of a friedelane skeleton, ascribing the signal at $\delta_{\rm H}$ 1.09 (J = 7.0 Hz) to H-23. The signals at $\delta_{\rm H}$ 5.74 (ddd, J = 10.0, 10.5, 17.0 Hz), 5.13 (dd, J = 10.0, 2.5 Hz), and 4.98 (dd, J = 17.0, 2.5 Hz) indicated a terminal double bond, attributed to H-1, H-2a, and H-2b, respectively, in agreement with the assignments from the HSQC spectrum for the signals at $\delta_{\rm C}$ 135.2 (C-1) and 118.7 (C-2). The olefinic hydrogens exhibited HMBC correlations with a methine carbon at δ_{C} 60.6 (C-10) and its corresponding hydrogen exhibited a resonance at $\delta_{\rm H}$ 1.72 (d, J=10.5 Hz, H-10 α), confirming that the vinylic residue was at C-10. The ¹H NMR spectrum revealed a quartet at $\delta_{\rm H}$ 2.48 (J = 7.0 Hz), which corresponded to the hydrogen attached to C-4 ($\delta_{\rm C}$ 47.8), and this signal showed HMBC correlations with the quaternary carbons at $\delta_{\rm C}$ 179.5 (C-3) and 38.6 (C-5), with a methylene carbon at $\delta_{\rm C}$ 34.3 (C-6), with a methine carbon at $\delta_{\rm C}$ 60.6 (C-10), and with the methyl carbons at $\delta_{\rm C}$ 11.7 (C-23) and 20.8 (C-24). The H-23 methyl protons ($\delta_{\rm H}$ 1.09) showed HBMC correlations with the carboxylic acid carbon C-3 ($\delta_{\rm C}$ 179.5) and with the quaternary carbon C-5 (δ_{C} 38.6). These correlations confirmed the location of the carboxylic group, and the additional ¹H and ¹³C NMR signals (Table 1) were similar to those of friedelin. Thus, 1 was 1,2-dehydro-2,3secofriedelan-3-oic acid, and the configuration at C-4 was proposed as R considering analogy with other naturally occurring friedelanes.

^{*} Corresponding author. Tel: (+52-55)-5622-4446. Fax: (+52-55)-5616-2217. E-mail: delgado@servidor.unam.mx.

Table 1. ¹H^{*a*} and ¹³C^{*b*} NMR Spectroscopy Data for 1-3 (δ in ppm)

	1		2		3		
position	$\delta_{\rm C}$, mult.	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, mult.	$\delta_{\mathrm{H}} (J \text{ in Hz})$	$\delta_{\rm C}$, mult.	$\delta_{\mathrm{H}} (J \text{ in Hz})$	
1	135.2, CH	5.74, ddd (17.0, 10.5, 10.0)	71.4, CH	4.84, br s	16.0, CH ₂	1.50^{c}	
2a	118.7, CH ₂	5.13, dd (10.0, 2.5)	52.7, CH ₂	2.66, dd (14.0, 4.5)	33.5, CH ₂	1.94, m	
2b		4.98, dd (17.0, 2.5)		2.38, dd (14.0, 2.5)		1.50 ^c	
3	179.5, qC		211.3, qC		68.2, CH	4.15, ddd (2.5,2.5,2.5)	
4	47.8, CĤ	2.48, q (7.0)	59.1, CH	2.30, q (6.5)	59.5, CH	2.20, d (2.5)	
5	38.6, qC	-	43.9, qC	_	38.5, qC		
6a	34.3, CH ₂	1.64, ddd (13.5, 3.5, 3.0)	34.3, CH ₂	1.78, ddd (13.5, 3.5, 3.5)	42.9, CH ₂	1.76, br d (12.5)	
6b		1.53 ^c				1.37 ^c	
7	17.7, CH ₂	1.47 ^c	18.8, CH ₂		18.0, CH ₂	1.45 ^c	
8	52.4, CH	1.20^{c}	53.9, CH	1.33 ^c	53.7, CH	1.36 ^c	
9	37.0, qC		38.6, qC		37.9, qC		
10	60.6, CH	1.72, d (10.5)	61.6, CH	1.47, br s	61.0, CH	0.98, br s	
11a	36.6, CH ₂	1.19 ^c	35.7, CH ₂	1.64, ddd (13., 3.0, 3.0)	36.0, CH ₂	1.45 ^c	
11b		1.14, m					
12a	30.3, CH ₂	1.28, m	30.4, CH ₂	1.39, m	31.0, CH ₂	1.34, m	
12b							
13	39.7, qC		39.8, qC		40.2, qC		
14	38.5, qC		38.5, qC		38.8, qC		
15a	32.3, CH ₂	1.50^{c}	32.7, CH ₂	1.55 ^c	32.8, CH ₂	1.52, m	
15b		1.30^{c}		1.29, m		1.31, m	
16a	36.0, CH ₂	1.55^{c}	36.2, CH ₂		36.5, CH ₂	1.57^{c}	
16b		1.36 ^c				1.36 ^c	
17	30.0. qC		30.1. qC		30.5. qC		
18	42.8, CH	1.53^{c}	43.0, CH	1.58, dd (11.0, 6.0)	43.4, CH	1.57, dd (11.0, 6.0)	
19a	35.3, CH ₂	1.36 ^c	35.5, CH ₂		35.8, CH ₂	1.38 ^c	
19b		1.19 ^c				1.22, dd (14.0, 6.0)	
20	28.2, qC		28.2, qC		28.5, qC		
21a	$32.8, CH_2$	1.46 ^c	33.0, CH ₂	1.50°	33.3, CH_2	1.50^{c}	
21b		1.25^{c}				1.28, m	
22a	39.3, CH ₂	1.49, m	39.3, CH ₂	1.50, m	39.7, CH_2	1.49 ^c	
22b		0.93 ^c				0.94^{c}	
23	11.7, CH ₃	1.09, d (7.0)	6.9, CH_3	0.94, d (6.5)	177.8, qC		
24	20.8, CH_3	1.11, s	17.4, CH ₃	1.08, s	$18.40, CH_3$	1.19, s	
25	18.9, CH_3	0.95, s	19.2, CH ₃	1.31, s	$18.43, CH_3$	0.89, s	
26	20.3, CH_3	0.995, s	20.2, CH_3	1.04, s	20.4, CH_3	1.01, s	
27	18.7, CH ₃	1.02, s	18.7, CH_3	1.05, s	18.9, CH_3	1.04, s	
28	$32.1, CH_3$	1.17, s	32.2, CH ₃	1.19, s	$32.2, CH_3$	1.19, s	
29	31.8, CH ₃	0.990, s	31.8, CH ₃	1.01, s	$32.4, CH_3$	1.00, s	
30	34.9, CH_3	0.94, s	34.9, CH_3	0.96, s	$35.2, CH_3$	0.95, s	

^{*a*} Recorded in CDCl₃ (**1**, **2** [50 °C]), CDCl₃–CD₃OD (1:1) (**3**) at 500 MHz. ^{*b*} Recorded in CDCl₃ (**1**, **2** [50 °C]), CDCl₃–CD₃OD (1:1) (**3**), at 125 MHz (**1**, **3**) and 75 MHz (**2**). ^{*c*} Overlapping signals.

Compound 2 was isolated as colorless needles. Its IR spectrum exhibited bands for OH (3370 cm⁻¹) and carbonyl (1703 cm⁻¹) groups. The molecular formula was established as C₃₀H₅₀O₂ from the HRFABMS ion at m/z 443.3884 [M + H]⁺, indicating six degrees of unsaturation. The ¹³C NMR spectrum (Table 1) had 30 resonances, and the DEPT spectra showed the presence of eight methyl, 10 methylene, five methine including one carbinol ($\delta_{\rm C}$ 71.4), and seven quaternary carbons with one carbonyl group at $\delta_{\rm C}$ 211.3. The ¹H NMR spectrum (Table 1) showed eight methyl signals, seven singlets ($\delta_{\rm H}$ 1.31, 1.19, 1.08, 1.05, 1.04, 1.01, and 0.96), and a doublet at $\delta_{\rm H}$ 0.94 (J = 6.5 Hz), similar to those described for 1. This last signal was ascribed to H-23 since it showed a HSQC correlation with the shielded methyl carbon resonance at $\delta_{\rm C}$ 6.9 and HMBC correlations with a methine carbon at $\delta_{\rm C}$ 59.1 (C-4) and with the quaternary carbons at $\delta_{\rm C}$ 43.9 (C-5) and 211.3 (C-3), establishing a ketone group at C-3. A secondary OH group was evident in the ¹H NMR spectrum by a broad signal located at $\delta_{\rm H}$ 4.84, which corresponded to the carbinol methine proton H-1. The existence of this group was supported by the signal of an oxygenated carbon at $\delta_{\rm C}$ 71.4 in the ¹³C NMR spectrum. Two doublets of doublets [$\delta_{\rm H}$ 2.66 (J = 14.0, 4.5 Hz) and 2.38 (J = 14.0, 2.5 Hz)] were assigned to methylene protons H-2a and H-2b, respectively, attached to C-2 ($\delta_{\rm C}$ 52.7). The quartet signal at $\delta_{\rm H}$ 2.30 (J = 6.5Hz) corresponded to the axial proton H-4 α . The OH group was assigned a β -orientation from the NOESY experiments, which exhibited interactions of equatorial proton H-1 α with H-10 α , H-8 α , and H-2a and H-2b. The additional ¹H and ¹³C NMR signals were similar to those reported for friedelane trierpenes. The structure of **2** was confirmed by X-ray diffraction analysis of crystals grown from ethyl acetate (Figure 1). Its absolute configuration was determined as depicted in **2** from a circular dichroism spectrum that showed a negative Cotton effect at 295 nm ($\Delta \varepsilon - 50.41$) due to the n $\rightarrow \pi^*$ transition of the carbonyl group.²² This configuration is characteristic for naturally occurring friedelanes.

Compound 3 was obtained as white crystals. Its molecular formula, C₃₀H₅₀O₃ (HRFABMS, *m/z* 459.3841 [M + H]⁺), indicated six degrees of unsaturation. IR absorptions at 3508 and 1717 cm⁻¹ and the ¹³C signals at $\delta_{\rm C}$ 68.2 and 177.8 established the presence of OH and carbonyl groups. The ¹³C NMR and DEPT spectra exhibited 30 signals involving seven methyl, 11 methylene, five methine, and seven quaternary carbons. The ¹H NMR spectrum showed six tertiary methyl singlets, of which two were overlapping methyls (H₃-24 and H₃-28). The signal at $\delta_{\rm H}$ 4.15 (ddd, J = 2.5, 2.5, 2.5 Hz, H-3α) placed a secondary OH at C-3 in 3, supported by an oxygenated carbon at $\delta_{\rm C}$ 68.2 in the ¹³C NMR spectrum that correlated with H-1 ($\delta_{\rm H}$ 1.50) in the HMBC spectrum. The doublet at $\delta_{\rm H}$ 2.20 (J = 2.5 Hz) was assigned to the hydrogen attached to C-4 (δ_c 59.5), since it showed HMBC correlations with the carboxylic acid group at C-23 ($\delta_{\rm C}$ 177.8), with C-5 ($\delta_{\rm C}$ 38.5), and with C-24 (δ_C 18.4), and a COSY correlation with H-3 α . The coupling constant between H-3 and H-4 (2.5 Hz) established the β -orientation of the OH and carboxylic groups, and this was confirmed by NOESY interactions of H-4 α with H-3 α and H-10 α .

Figure 1. ORTEP drawing of 2 with atom labeling.

The additional ¹H and ¹³C NMR (Table 1) signals were similar to those reported for friedelane trierpenes, verifying structure **3**.

Friedelanes functionalized at ring A possess a variety of biological activities,²³ and we considered that compound 2 offered the possibility of various structural modifications. Therefore, some derivatives were prepared in order to explore the cytotoxic potential of the resulting semisynthetic friedelane derivatives. Reduction of 2 with NaBH₄ in THF-H₂O²⁴ under reflux afforded 1β , 3β dihydroxyfriedelane (6) in good yield, which was subjected to acetylation with Ac₂O-pyridine, yielding the monoacetyl (7) and diacetyl (8) derivatives. Oxidation of 2 by Jones's reagent²⁵ at room temperature produced the previously reported 1,3-diketone 9 in moderate yield.^{26,27} Reaction of **2** with hydroxylamine chloride²⁸ afforded oxime 10, which was treated with p-TsCl,²⁸ producing the lactam 11. Treatment of 2 with *m*-CPBA in $CHCl_3^{29}$ under reflux afforded 12-14. Compound 13 has been reported previously.³⁰ The structures of the compounds obtained by these transformations (Scheme 1) were determined by conventional spectroscopic analyses (Tables 2 and 3).

The cytotoxicity of compounds 1-14 was tested against six human tumor cell lines. Compound 5 was cytotoxic against the U251 cell line, with IC₅₀ 8.4 μ M. Compounds 1, 4, and 6 exhibited weak activity in the same cell line, with IC₅₀ 36.8, 17.1, and 22.8 μ M, respectively, when compared to the positive control adriamycin (IC₅₀ 0.3 μ M). Compound 14 exhibited weak cytotoxicity against the HCT-15 cell line (IC₅₀ 41.8 μ M compared with adriamycin (IC₅₀ 0.23 μ M). Friedelin-3,4-lactone (4) and acetyl aleuritolic acid (5) were more cytotoxic than 1,2-dehydro-2,3-secofriedelan-3-oic acid (1). All other compounds were noncytotoxic against the tested cell lines.

Experimental Section

General Experimental Procedures. Melting points were determined on a Fisher Johns apparatus and are uncorrected. Optical rotations were measured in CHCl₃ on a Perkin-Elmer 341 polarimeter using a sodium lamp at the wavelength 589 nm. UV data were measured on a Shimadzu UV-160 spectrophotometer. The CD spectrum was measured with a JASCO J-720 spectrometer. IR spectra were recorded on a Nicolet Magna FT-IR 750 spectrometer. ¹H (500 MHz),¹³C (125.0 MHz), and 2D NMR spectra (in CDCl₃, DMSO, and CD₃OD) were obtained on a Varian Inova 500, and ¹³C NMR (75.0 MHz) were obtained on a Varian Unity 300 spectrometer. Chemical shifts were expressed in parts per million (δ) relative to TMS as internal standard. EI and HRFAB mass spectra were measured on JEOL JMS-AX 505 HA and JEOL JMX-

Scheme 1. Friedelane Derivatives^a

 a Reagents: (a) NaBH4; (b) Ac2O, Py; (c) Jones reagent; (d) NH2OH; (e): p-TsCl, Py; (f) m-CPBA.

SX 102 A mass spectrometers, respectively. Analytical TLC was carried out on precoated silica gel 60 F_{254} sheets (Merck). Column chromatography (CC) was performed using silica gel (230–400). All solvents were dried and distilled before use.

Plant Material. Aerial parts of *G. parviflora* were collected in Zacatal, Veracruz, México, during April 2003, and identified by Francisco Ramos Marchena. A voucher specimen was deposited at the National Herbarium (MEXU, voucher 1104455), Instituto de Biología, Universidad Nacional Autónoma de México.

Extraction and Isolation. The air-dried plant material (leaves and branches, 5.7 kg) was powdered and extracted at room temperature consecutively with *n*-hexane (24 L \times 3), ethyl acetate (24 L \times 3), and methanol (24 L \times 2), and the extracts were concentrated to dryness in vacuo to obtain 27.7, 57.4, and 54.0 g of residues, respectively. The hexane extract was chromatographed on a silica gel (90 g) column with a gradient solvent system of hexane-EtOAc. The fractions (100 mL each) were monitored by TLC and pooled into seven main fractions. Fraction 3 (38.0 mg) was separated by preparative TLC using benzene-EtOAc (9:1) to yield 1,2-dehydro-2,3-secofriedelan-3-oic acid (1, 25 mg) and acetyl aleuritolic acid (5, 8 mg). Fraction 4 was subjected to CC using mixtures of *n*-hexane and EtOAc of increasing polarity. Five subfractions were collected. Subfraction 3 (87 mg) was purified by preparative chromatography using benzene-EtOAc (98:2) to obtain compound 1 (50 mg), friedelin-3,4-lactone (4, 6 mg), and β -sitosterol (19 mg). The ethyl acetate extract was suspended in acetone, filtered, and washed with a mixture of hexane–ethyl acetate (1:1), yielding 1β hydroxyfriedelin (2, 2.0 g). The filtrate was evaporated to dryness, and this residue (55.0 g) was chromatographed on a silica gel column eluted with mixtures of n-hexane, n-hexane-EtOAc, and n-EtOAc-MeOH of increasing polarity to afford 11 main fractions. Fraction 2 (1.48 g) was fractionated by silica gel CC eluted with n-hexane-EtOAc mixtures to give eight subfractions. (8.1-8.8). Subfraction 8.6 (82 mg) was purified by preparative TLC using toluene-EtOAc (7:3) to afford 63 mg of elemicin. Fraction 6 (3.7 g) was subjected to silica gel CC and eluted with a gradient of n-hexane-EtOAc to give 13 subfractions (13a-13m). Subfraction 13g (0.97 g) was subjected to CC over silica gel using an n-hexane-EtOAc mixture of increasing polarity to yield seven fractions. Fraction 13g-4 (46 mg) was purified by preparative

Table 2.	H NMR Data of Compound	ds 6–8 , 10–12 , and 14 (δ]	in ppm, J in Hz) ^{a}				
position	6	7	8	10	11	12	14
1	4.48, br s	4.38, br s	5.47, br s	4.66, s	4.61, d (8.0)	4.66, br s	6.96, dd (10.5, 2.0)
2a 21-	2.21, ddd (15.0, 3.0, 2.5)	2.12, ddd (15.5, 2.5, 2.5)	2.21, ddd (16.0, 2.5, 2.0)	2.53, dd (13.0, 3.0)	2.79, d (14.0)	2.92, d (14.0)	6.01, dd (10.0, 3.0)
07 C	1.09, ddd (12.0, 2.2, 2.0) 3 87 hr s	1.00, ddd (12.2, 4.0, 4.0) 5 15 ddd (3 0 3 0 3 0)	1.71, dad (10.0, 4.0, 4.0) 4.04 br s	z.00, dd (13.0, 4.0)	(C.1, 0.14.0) dd (14.0)	2.00, dd (14.0, 7.0)	
04	1.32, br s	1.45^{b}	1.44^{b}	2.26. g (6.5)	2.37. g (7.0)	2.24. a (6.0)	
6a	1.76, ddd (13.0, 3.5, 3.0)	1.77, ddd (13.0, 3.0, 3.0)	1.81, ddd (13.0, 3.0, 3.5)	1.75, ddd (13.0, 3.0, 3.0)	1.45, q (3.5)	1.45, m	1.81, m
6b	0.96	1.01^{b}	1.01^{b}	1.23^{b}	1.11^{b}	1.05, m	1.53^{b}
7a	1.41^{b}	1.49^{b}	1.45^{b}	1.48^{b}	1.52, m	1.51	1.58^{b}
Дþ		1.43, m					
8	1.21^{b}	1.21^{b}	1.21^{b}	1.25^{b}	1.26, m	1.21^{b}	1.42, dd (11.0, 4.00)
10	0.88, br s	0.88, br s	1.05, br s	1.18^{b}	0.99, br s	1.00^{b}	2.84, br s
11a	1.58, m	1.62, ddd (13.0, 3.5, 3.0)	1.45^{b}	1.61, br d (13.0)	1.64, ddd (13.0, 3.0, 3.0)	1.60, m	1.62 dd (13.0, 3.5, 3.0)
11b	1.19^{b}	1.37^{b}	1.34^{b}	1.31, br d (13.5)		1.34, m	1.32^{b}
12a	1.41^{b}	1.44^{b}	1.33^{b}	1.38^{b}	1.41^{b}	1.41, m	1.38^{b}
12b	1.35^{b}	1.35^{b}				$1, 37^{b}$	
15a	1.49, m	1.49, m	1.49, m	1.50^{b}		1.50, m	1.32^{b}
15b	1.25^{b}	1.24^{b}	1.24^{b}	1.24^{b}		1.24^{b}	
16a	1.52, m	1.53, m	1.53, m	1.54, m	1.56^{b}	1.53^{b}	1.54^{b}
16b	1.34^{b}	1.35^{b}	1.35^{b}	1.35^{b}	1.37 br s	1.37^{b}	1.34, m
18	1.54^{b}	1.56, dd (12.0, 6.0)	1.54 dd (11.0, 6.0)	1.55, dd (11.0, 6.0)	1.58, dd (11.0, 6.0)	1.57, dd (11.0, 6.0)	1.57, dd (11.0, 6.0)
19a	1.35^{b}	1.37^{b}	1.34^{b}	1.37^b	1.40^{b}	1.38^{b}	1.38^{b}
19b	1.23^{b}	1.21^{b}	1.20^{b}	1.21, dd (14.0, 6.0)	1.23, dd (14.0, 6.0)	1.21^{b}	1.20, dd (13.5, 6.0)
21a	1.44, m	1.47^{b}	1.47, m	1.46^{b}	1.46^{b}	1.47^{b}	1.46, m
21b	1.26, m	1.26^{b}	1.23, m	1.25^{b}	1.25^{b}	1.26^{b}	1.27^{b}
22a	1.45^{b}	1.47^{b}	1.47^{b}	1.48^{b}	1.50, br s	1.49, m	1.47^{b}
22b	0.92, br s	0.91^{b}	0.93^{b}	0.93^{b}	0.93, br s	0.94^{b}	0.93, br d
23	1.04, d (7.0)	0.90, d (7.0)	0.91, d (7.0)	1.08, d (6.5)	1.12, d (7.0)	1.24, d (6.5)	1.26, s
24	1.28, s	1.27, s	1.28, s	1.09, s	1.17, s	1.25, s	0.91, s
25	1.29, s	1.32, s	1.07, s	1.27, s	1.30, s	1.29, s	0.96, s
26	1.03, s	1.03, s	1.00, s	1.01, s	1.037, s	1.03, s	1.01, s
27	0.99, s	0.99, s	0.98, s	1.02, s	1.031, s	1.00, s	1.04, s
28	1.17, s	1.18, s	1.17, s	1.17, s	1.19, s	1.18, s	1.19, s
29	1.00, s	1.00, s	0.99, s	1.00, s	1.00, s	1.00, s	1.00, s
30	0.94, s	0.94, s	0.94, s	0.95, s	0.95, s	0.95, s	0.95, s
OH-1	2.64, d (7.0)						
OH-3	2.32, d (6.0)						
OAc-1			2.00, s				
OAc-3		2.07, s	2.02, s				
a Recorde	ad in CDCl ₃ (6-8, 12, 14), CD	Cl ₃ -DMSO (3:1) (10), CDCl ₃	-MeOH (1:1) (11) at 500 MH	Hz. ^b Overlapping signals.			

1842 Journal of Natural Products, 2010, Vol. 73, No. 11

Reyes et al.

Table 3. ¹³C NMR Data of Compounds^{*a*} 6–8, 10–12, and 14 (δ in ppm)

position	6	7	8	10	11	12	14
1	68.4	67.2	68.1	68.1	64.7	65.5	150.7
2	41.9	39.8	36.1	37.6	45.0	43.7	127.4
3	74.1	74.8	72.8	166.6	177.4	172.6	198.3
4	49.5	48.3	48.0	51.2	60.3	85.2	78.4
5	38.1	37.6	37.8	42.5	41.2	41.7	45.5
6	44.4	44.4	43.7	42.6	41.4	40.4	32.7
7	17.8	18.0	17.9	18.1	19.2	18.4	17.3
8	53.8	53.8	53.9	52.9	53.9	53.4	51.6
9	39.3	38.2	37.8	38.5	40.0	39.3	36.3
10	61.8	61.4	60.4	60.7	67.2	66.2	52.9
11	35.5	35.3	35.3	34.5	36.0	35.6	34.9
12	30.5	30.4	30.3	29.6	31.2	30.5	30.2
13	39.7	39.7	39.6	38.9	39.9	39.5	39.7
14	38.4	38.4	38.4	37.6	39.2	38.6	38.2
15	32.4	32.4	32.4	31.7	33.0	32.6	32.1
16	36.1	36.0	36.0	35.3	36.6	36.1	35.9
17	30.0	30.0	30.0	29.3	30.6	30.0	30.0
18	42.8	42.8	42.8	42.1	43.5	42.9	42.8
19	35.3	35.3	35.3	34.6	35.9	35.4	35.4
20	28.2	28.2	28.1	27.5	28.6	28.2	28.1
21	32.8	32.8	32.8	32.2	33.4	32.9	32.7
22	39.3	39.3	39.3	38.5	39.8	39.3	39.2
23	12.0	11.6	11.5	8.1	15.7	15.2	16.4
24	18.4	18.2	17.2	16.2	15.8	16.2	17.2
25	19.4	19.2	18.8	18.3	19.4	19.2	20.3
26	20.0	20.0	20.1	19.4	20.4	20.0	19.9
27	18.7	18.7	18.6	18.1	19.0	18.6	18.7
28	32.1	32.1	32.1	31.5	32.4	32.1	32.1
29	31.8	31.8	31.8	31.3	32.1	31.8	31.7
30	35.0	35.0	34.9	34.4	35.2	34.9	35.0
acetate-1							
C=O			170.0				
CH ₃			21.6				
acetate-3							
C=0		170.2	170.5				
CH ₃		21.3	21.2				

^{*a*} Recorded in CDCl₃ (6–8, 12, 14), CDCl₃–DMSO (3:1) (10), CDCl₃–MeOH (1:1) (11) at 125 MHz (6–8, 10–12) and 75 MHz (14).

TLC using *n*-hexane—EtOAc (6:4) to yield 36.8 mg of 4-hydroxy-5propionyl-1,3-di-*O*-methylpyrogallol. Subfraction 13i (0.38 g) was suspended in a mixture of hexane—CH₂Cl₂ (1:1), the suspension was filtered, and the solids were washed with hexane—CH₂Cl₂ (1:1) and crystallized from CHCl₃—MeOH to obtain 7.8 mg of compound **3**. The methanol extract of *G. parviflora* (54 g) was chromatographed on a silica gel column with mixtures of *n*-hexane—EtOAc and EtOAc—MeOH of increasing polarity, yielding 15 main fractions. The 13th fraction (152 mg) was purified by preparative chromatography using *n*-hexane—EtOAc—MeOH (40:55:5) to afford 43 mg of a yellow oil, which was further purified by analytical TLC using CH₂Cl₂— EtOAc—MeOH (80:15:5) to yield (—)-syringaresinol (21 mg). The last fraction from chromatography of the MeOH extract yielded β -sitosterol- β -D-glucopyranoside (10 mg).

1,2-Dehydro-2,3-secofriedelan-3-oic acid (1): white solid (from CHCl₃); mp 205–208 °C; $[\alpha]^{25}_{D}$ +16.8 (*c* 0.095, CHCl₃); IR (KBr) ν_{max} 3375, 2928, 2860, 1693, 1463, 1388, 1231, 1079, 1007, 919, 674 cm⁻¹; ¹H and ¹³C NMR, see Table 1; EIMS *m*/*z* 442 [M]⁺ (31), 427 (32), 245 (39), 205 (96), 191 (55), 163 (49), 137 (53), 109 (79), 95 (100), 69 (81), 57 (61), 43 (40), 29 (7); HRFABMS *m*/*z* [M + H]⁺ 443.3886 (calcd for C₃₀H₅₁O₂, 443.3889).

1β-Hydroxyfriedelin (2): colorless needles (from EtOAc) relatively insoluble in solvents such as acetone, ethyl acetate, THF, and CH₂Cl₂. This limited solubility could be explained by two intermolecular hydrogen bonds (identified by X-ray analysis) between the carbonyl and OH groups that enhance the crystalline stability.³¹ Mp >300 °C; $[\alpha]^{25}_{D} - 38.0 (c \ 0.1, CHCl_3);$ UV (CHCl₃) λ_{max} (log ε) 243 (2.42) nm; CD (CHCl₃) $\lambda_{max} \Delta \varepsilon_{295} - 50.41;$ IR (KBr) ν_{max} 3370, 2938, 2865, 1704, 1454, 1384, 1235, 1174, 1121, 1024, 917, 651 cm⁻¹; ¹H and ¹³C NMR, see Table 1 (the spectra were recorded at 50 °C due to the low solubility of **2** in CDCl₃ at rt); EIMS *m/z* 442 [M]⁺ (5), 424 (4), 344 (100), 289 (7), 258 (41), 230 (14), 205 (11), 193 (77), 184 (22), 135 (39), 129

(27), 90 (33), 77 (20), 57 (50), 18 (57); HRFABMS m/z [M + H]⁺ 443.3884 (calcd for C₃₀H₅₁O₂, 443.3889).

3β-Hydroxyfriedelan-23-oic acid (3): white crystals (from CH₃Cl₃: MeOH), mp 237–240 °C; $[\alpha]^{25}_{D}$ +37.7 (*c* 0.13 CHCl₃); IR (KBr) ν_{max} 3508, 2934, 2867, 1717, 1453, 1385, 1235, 1188, 1002, 687 cm⁻¹; ¹H and ¹³C NMR, see Table 1; FABMS *m/z* 459 [M + H]⁺ (2), 441 (3), 391 (4), 307 (11), 289 (13), 165 (22), 154 (80), 136 (72), 107 (40), 77 (100), 63 (56), 39 (62), 27 (32), 14 (8); HRFABMS *m/z* [M + H]⁺ 459.3841 (calcd for C₃₀H₅₁O₃, 459.3838).

Preparation of 1\beta,3\beta-Dihydroxyfriedelane (6). 1 β -Hydroxyfriedelin (2) (50.0 mg, 0.11 mmol) was suspended in THF-H₂O (3:0.1 mL), and NaBH₄ (9.4 mg, 0.25 mmol) was added. The resulting mixture was stirred under reflux and monitored by TLC (hexane-EtOAc, 7:3). After completion of the reaction (3 h), distilled water (3 mL) was added to the reaction mixture, and it was then stirred for an additional 5 min at rt. The mixture was extracted with CH₂Cl₂ (3 × 10 mL) and dried over anhydrous Na₂SO₄. The crude material was purified by CC (silica gel, hexane-EtOAc, 8:2), affording compound **6** (47.8 mg, 95.2% yield).

1β,3β-Dihydroxyfriedelane (6): white needles (CHCl₃-MeOH), mp 217–219 °C; [α]²⁵_D +7.0 (*c* 0.1, CHCl₃); IR (KBr) ν_{max} 3428, 2937, 2867, 1459, 1385, 1145, 1055, 976, 848, 578 cm⁻¹; ¹H and ¹³C NMR, see Tables 2 and 3, respectively; EIMS *m/z* 444 [M]⁺ (7), 429 (21), 291 (22), 260 (27), 220 (18), 205 (35), 191 (33), 163 (28), 137 (38), 123 (68), 95 (100), 83 (95), 69 (95), 55 (82), 43 (83), 18 (77); HRFABMS *m/z* 444.3973 [M]⁺ (calcd for C₃₀H₅₁O₂, 444.3967).

Acetylation of 1β , 3β -Dihydroxyfriedelane (6). Compound 6 (30.5 mg) was treated with Ac₂O (1.5 mL) in pyridine (1.0 mL) at room temperature for 72 h. The formation of products was monitored by TLC using *n*-hexane-CH₂Cl₂-EtOAc (8:1:1). The reaction mixture was worked up as usual, and the residue was subjected to CC over silica gel. Elution with an *n*-hexane-CH₂Cl₂-EtOAc solvent system afforded 7 (12.5 mg, 41%), 8 (3.6 mg, 9.9%), and recovered starting material (6, 10.7 mg, 35.1%).

3β-Acetoxy-1β-hydroxyfriedelane (7): colorless needles (CH₂Cl₂), mp 213-215 °C; [α]²⁵_D -5.45 (*c* 0.11, CHCl₃); IR (CHCl₃) ν_{max} 2934, 2865, 1731, 1462, 1378, 1251, 1230, 1139, 1019, 978 cm⁻¹; ¹H and ¹³C NMR, see Tables 2 and 3; EIMS *m/z* 486 [M]⁺ (3), 471 (10), 426 (9), 333 (8), 273 (14), 260 (18), 229 (15), 218 (31), 205 (21), 191 (26), 149 (27), 121 (60), 109 (73), 95 (100), 69 (82), 55 (62), 43 (45), 41 (27), 29 (6); HRFABMS *m/z* 486.4065 [M]⁺ (calcd for C₃₂H₅₄O₃, 486.4073).

1β,**3**β-Diacetoxyfriedelane (8): colorless needles (CH₂Cl₂), mp 219–221 °C; [α]²⁵_D +9.2 (*c* 0.13, CHCl₃); IR (CHCl₃) ν_{max} 2939, 2867, 1726, 1462, 1371, 1268, 1242, 1140, 1022, 977 cm⁻¹; ¹H and ¹³C NMR, see Tables 2 and 3; EIMS *m*/*z* 528 [M]⁺ (6), 468 (4), 426 (9), 408 (8), 393 (9), 376 (11), 273 (17), 260 (26), 205 (48), 149 (40), 137 (44), 123 (90), 109 (97), 95 (100), 81 (75), 69 (98), 55 (52), 43 (68); HRFABMS *m*/*z* 528.4186 [M]⁺ (calcd for C₃₄H₅₆O₄, 528.4179).

Preparation of Friedelane-1,3-dione (9). 1β-Hydroxyfriedelin (2) (14.0 mg, 0.03 mmol) was suspended in THF (5 mL). Jones reagent was added dropwise until the orange color remained. The reaction mixture was stirred (30 min) at room temperature, and then it was quenched with MeOH, producing a blue-green solution. The solvents were eliminated under vacuum, and water was added. The product was extracted with CHCl₃ (3 × 3 mL), washed with aqueous NaHCO₃ and brine, and dried over anhydrous Na₂SO₄. The product was purified by CC (silica gel, hexane–EtOAc, 8:2) to afford 1,3-diketofriedelane (9) (9.0 mg, 64% yield) and recovered 1β-hydroxyfriedelin (2) (2.0 mg, 14.3% yield). Compound **9** was identified by direct comparison with data reported in the literature,^{26,27} [α]²⁵_D –5.0 (*c* 0.12, CHCl₃), lit.²⁷ [α]²⁵_D –4.2.

Preparation of 1β-Hydroxyfriedelin-3-oxime (10). Compound **2** (100 mg, 0.22 mmol) and hydroxylamine hydrochloride (39.3 mg) were dissolved in a mixture of anhydrous pyridine (1.5 mL) and absolute ethanol (1.5 mL), and the reaction mixture was refluxed for 30 min and cooled to rt.²⁸ Then, a solution of HCl (10%, 2 mL) was added, obtaining a precipitate, which was filtered. The solid was washed with EtOAc to obtain **10** (98.9 mg, 95.6%).

1β-Hydroxyfriedelin-3-oxime (10): colorless crystals, mp 242–244 °C; $[\alpha]^{25}_{D}$ +18.4 (*c* 0.10, CHCl₃); IR (KBr) ν_{max} 3611, 3289, 2933, 2867, 1674, 1460, 1385, 936 cm⁻¹; ¹H and ¹³C NMR, see Tables 2 and 3; EIMS *m*/*z* 457 [M]⁺ (17), 439 (33), 422 (100), 408 (19), 205 (96), 191 (21), 166 (38), 138 (44), 123 (68), 109 (76), 95 (96), 69

(79), 55 (50), 41 (22), 18 (35); HRFABMS m/z [M + H]⁺ 458.3997 (calcd for C₃₀H₅₂O₂N, 458.3998).

Preparation of 1 β **-Hydroxyfriedelin-3,4-lactam (11).** Compound **10** (42.0 mg, 0.09 mmol) and *p*-toluenesulfonyl chloride (14.0 mg, 0.07 mmol) were dissolved in pyridine (1 mL), and the mixture was refluxed for 5 h. Then, the reaction mixture was cooled and diluted with water (3 mL), and the product was extracted with CHCl₃ (3 × 5 mL). The organic phases were combined, washed with HCl (10%) and brine, and dried over anhydrous Na₂SO₄. Concentration of the organic phase afforded **11** (39.4 mg, 93.8%).

1β-Hydroxyfriedelin-3,4-lactam (11): white powder, mp 262–264 °C; $[\alpha]^{25}_{D}$ –13.3 (*c* 0.10, CHCl₃); IR (KBr) ν_{max} 3422, 3257, 3938, 2868, 1667, 1452, 1192 cm⁻¹; ¹H and ¹³C NMR, see Tables 2 and 3; EIMS *m*/*z* 457 [M]⁺ (25), 439 (8), 424 (32), 218 (21), 205 (48), 191 (36), 163 (22), 137 (29), 123 (39), 109 (48), 95 (56), 81 (47), 69 (45), 55 (31), 44 (100), 28 (11); HRFABMS *m*/*z* [M + H]⁺ 458.4000 (calcd for C₃₀H₅₂O₂N, 458.3998).

Reaction of 1 β **-Hydroxyfriedelin (2) with** *m***-CPBA.** Compound **2** (30 mg, 0.06 mmol) was dissolved in CHCl₃ (15 mL), and then *m*-CPBA²⁹ (29.3 mg, 0.16 mmol) was added. The mixture was refluxed for 6 h. The reaction mixture was diluted with CHCl₃, and the solution was washed successively with 5% Na₂SO₃(aq), saturated NaHCO₃, and brine and dried with Na₂SO₄. The solution was evaporated in vacuo, and the residue was separated by silica gel CC eluted with mixtures of *n*-hexane and EtOAc, to afford compounds **12** (4.2 mg, 13.5%), **13** (4.8 mg, 16.6%), and **14** (3.7 mg). Compound **13** was identified by direct comparison with data reported in the literature.^{12,30}

1β-Hydroxyfriedelin-3,4-lactone (12): amorphous solid (CHCl₃); [α]²⁵_D +17.1 (*c* 0.10, CHCl₃); IR (KBr) ν_{max} 3364, 2939, 2867, 1720, 1447, 1384, 1306, 1265, 1183, 1076 cm⁻¹; ¹H and ¹³C NMR, see Tables 2 and 3; EIMS *m*/*z* 458 [M]⁺ (1), 173 (12), 83 (100), 55 (35), 43 (7), 18 (5); HRFABMS *m*/*z* 459.3832 [M + H]⁺ (calcd for C₃₀H₅₁O₃, 459.3838).

4α-Hydroxyfriedel-1-en-3-one (14): white crystals (CHCl₃); mp 266–268 °C; [α]²⁵_D –90 (*c* 0.10, CHCl₃); UV (MeOH) λ_{max} (log ε) 238 (3.84) nm; IR (CDCl₃) ν_{max} 2931, 2866, 2867, 1674, 1463, 1388, 1235, 1172, 1073 cm⁻¹; ¹H and ¹³C NMR, see Tables 2 and 3; EIMS *m*/*z* 440 [M]⁺ (43), 412 (12), 397 (13), 218 (13), 205 (26), 152 (30), 109 (31), 95 (73), 69 (100), 67 (42), 55 (29), 18 (87); HRFABMS *m*/*z* 440.3651 [M]⁺ (calcd for C₃₀H₄₈O₂, 440.3654).

Cytotoxic Assays. Human tumor cell lines leukemia (K562), central nervous system (U251, Glia), colon (HCT-15), breast (MCF-7), lung (SKLU-1), and prostate cancer (PC-3) were supplied by the National Cancer Institute. The cytotoxic activities of 1-14 and of the *n*-hexane and ethyl acetate extracts on tumor cells were determined using the protein-binding dye sulforhodamine B (SRB) in a microculture assay to measure cell growth.¹³ The cells were cultured in RPMI-1640 (Sigma Chemical Co., Ltd., St. Louis, MO), supplemented with 10% fetal bovine serum, 2 μ M L-glutamine, 100 IU/mL penicillin G, 100 μ g/mL streptomycin sulfate, and 0.25 μ g/ mL amphotericin B (Gibco). They were maintained at 37 °C in a 5% CO₂ atmosphere with 95% humidity. For the assay, 5×10^4 cells/mL (K562, MCF-7), 7.5×10^4 cells/mL (U251, PC-3, SKLU-1), and 10 \times 10⁴ cells/mL (HCT-15) with 100 $\mu L/well$ of the cell suspensions were seeded in 96-well microtiter plates and incubated to allow cell attachment. After 24 h, 100 μ L of each test compound, extract, or positive control was added (all test substances were dissolved in DMSO). After 48 h, adherent cell cultures were fixed in situ by adding 50 µL of cold 50% (w/v) aqueous trichloroacetic acid (TCA) and incubated for 60 min at 4 °C. The supernatant was discarded, and the plates were washed three times with H2O and then air-dried. Cultures fixed with TCA were stained for 30 min with 100 µL of 0.4% SRB solution. Protein-bound dye was extracted with 10 μ M unbuffered Tris base, and the optical densities were read on an Ultra microplate reader (E1x 808, Bio-Tek Instruments, Inc.), at a wavelength of 515 nm. Results were expressed as concentration giving 50% inhibition (IC₅₀). The data were calculated according to the protocol of Monks,¹³ where a dose-response curve was plotted for each compound; the IC₅₀ values were estimated from linear regression equations. The IC₅₀ values (mean \pm standard error) for 1, 4-6, 14, and the positive control (adriamycin) are reported in the text.

Acknowledgment. We thank CONACyT (México) and Programa

transmission 0.9999, minimum transmission 0.9811.

de Maestría y Doctorado en Ciencias Químicas (UNAM) for financial support. We also thank E. M. Martínez (Instituto de Biología, UNAM), A. Cano, M. I. Chávez, R. Patiño, L. Velasco, and J. Pérez Flores (Instituto de Química, UNAM) for technical assistance.

automatic diffractometer with a CCD area detector at 173(2) K using graphite- monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The

structure was solved by direct methods and refined by full-matrix leastsquares on F^2 using the program SHELXS-97.³² The crystal data are

summarized as follows: empirical formula C30H50O2; formula weight

442.70 amu; crystal color and habit, colorless prism, orthorhombic,

crystal size $0.268 \times 0.056 \times 0.038$ mm, space group $P2_12_12_1$, Z = 4, a = 6.230(3) Å, b = 14.029(8) Å, c = 29.261(16) Å, V = 2557(2) Å³;

 $D_{\text{calcd}} = 1.150 \text{ Mg/m}^3$; $F(000) = 984, \mu = 0.069 \text{ mm}^{-1}$; 18 537 collected reflections (2.01° $\leq \theta \leq 25.44^\circ$), $-7 \leq h \leq 7, -16 \leq k \leq 16, 35 \leq$

 $l \leq 35$; 2723 independent reflections ($R_{int} = 0.0877$); goodness-of-fit

on F^2 is 1.020, final *R* indices for $I > 2\sigma(I)$, $R_1 = 0.0877$, $wR_2 = 0.1724$,

R indices for all data $R_1 = 0.1560$, $wR_2 = 0.2023$; refining 301

parameters and no restraints; the largest difference peak and hole was

0.289 and $-0.266 \text{ e} \text{ Å}^{-3}$; completeness to θ (25.44°) 99.2%, maximum

Supporting Information Available: ¹H and ¹³C spectra of compounds **1–3**, **6–8**, **10–12**, and **14**, CD curve, and X-ray crystallographic data for **2** are provided. This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Abdel-Fattah, M. R. Bot. J. Linnean Soc. 1987, 94, 293-326.
- (2) Hohmann, J.; Evanics, F.; Berta, L.; Bartók, T. Planta Med. 2000, 66, 291–294.
- (3) Mujumdar, A. M.; Misar, A. V. *J. Ethnopharmacol.* 2004, *90*, 11–15.
 (4) Quian-Cutrone, J.; Huang, S.; Trimble, J.; Li, H.; Lin, P. F.; Alam,
- M.; Klohr, S. E.; Kadow, K. F. J. Nat. Prod. 1996, 59, 196–199.
 (5) Hegazy, M. E. F.; Mohamed, A. E. H. H.; Aoky, N.; Ikeuchi, T.;
- Ohta, E.; Ohta, S. *Phytochemistry* **2010**, *71*, 249–253.
- (6) Delgado, G.; Hernández, J.; Rios, M. Y.; Aguilar, M. I. Planta Med. 1994, 60, 389–390.
- (7) García, A.; Delgado, G. Helv. Chim. Acta 2006, 89, 16-29.
- (8) García, A.; Ramírez-Apan, T.; Cogordan, J. A.; Delgado, G. Can. J. Chem. 2006, 84, 1593–1602.
- (9) García, A.; Delgado, G. J. Nat. Prod. 2006, 69, 1618-1621.
- (10) Martínez, M.; Jiménez, J.; Cruz, R.; Juárez, E.; García, R.; Cervantes, A.; Mejía, R. An. Inst. Biol. (UNAM), Ser. Bot. 2002, 73, 155–281.
- (11) Monteiro, C.; Manta, C.; Justino, F.; Tavares, R.; Curto, M. J. M.; Pedro, M.; Nascimiento, M. S. J.; Pinto, M. J. Nat. Prod. 2004, 67, 1193–1196.
- (12) Monteiro, C.; Justino, F.; Tavares, R.; Curto, M. J. M.; Florencio, M. H.; Nascimiento, M. S. J.; Pedro, M.; Cerqueira, F.; Pinto, M. M. M. J. Nat. Prod. 2001, 64, 1273–1277.
- (13) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757–766.
- (14) Patra, A.; Chaudhuri, S. K. Indian J. Chem. 1989, 28B, 376-380.
- (15) Maciel, M. A. M.; Pinto, A. C.; Brabo, S. N.; Da Silva, M. N.
- Phytochemistry 1998, 49, 823–828.
 (16) Addae-Mensah, I.; Achenbach, H.; Thoithi, G. N.; Waibel, R.; Mwangi, J. W. Phytochemistry 1992, 31, 2055–2058.
- (17) Bellido, S. I.; Pollán, M. S.; Caballero, E.; González, M. S. Phytochemistry 1985, 24, 2758–2760.
- (18) Lane, A. M.; Kubanek, J. Phytochemistry 2006, 67, 1224-1231.
- (19) Jayasinghe, L.; Mallika, B. M.; Nishantha, K. H. R.; Gayathri, N. W. M.; Ratnayake, B. M.; Hara, N.; Fujimoto, Y. *Phytochemistry* 2003, 62, 637–641.
- (20) Choi, S. Z.; Yang, M. C.; Choi, S. U.; Lee, K. R. Arch. Pharm. Res. 2006, 29, 203–208.
- (21) Ito, A.; Kasai, R.; Yamasaki, K.; Duc, N. M.; Nham, N. T. *Phytochemistry* **1994**, *37*, 1455–1458.
- (22) Berova, N.; Nakanishi, K., Woody, R. W. Circular Dichroism. Principles and Applications; Wiley: New York, 2000; Chapter 10.
- (23) Bass, W. J. Phytochemistry **1985**, 24, 1875–1889.
- (24) Zeynizadeh, B.; Behyar, T. Bull. Chem. Soc. Jpn. 2005, 78, 307-315.
- (25) Hunter, A. C.; Priest, S. M. *Steroids* 2006, 71, 30–33.
 (26) Klass, J.; Tinto, W. F.; McLean, S.; Reynolds, W. F. *J. Nat. Prod.*
- 1992, 55, 1626–1630.
 (27) Joshi, B. S.; Kamat, V. N.; Viswanathan, N. *Tetrahedron* 1973, 29, 1365–1374.

X-ray Structure Determination of 1\beta-Hydroxyfriedelin (2).³¹ The X-ray crystallographic data were measured on a Bruker Smart Apex

- (29) Tori, M.; Matsuda, R.; Sono, M.; Kohama, Y.; Asakawa, Y. Bull. Chem. Soc. Jpn. 1988, 61, 2103–2108.
- (30) Talapatra, B.; Lahiri, B.; Basak, A.; Pradhan, D. K.; Talapatra, S. K. Indian J. Chem. 1983, 22B, 741–745.
- (31) Crystallographic data for the structure of compound **2** reported in this paper have been deposited with the Cambridge Crystallographic Data

Centre (CCDC No. 766372). Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

(32) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112-122.

NP100440P